
Multi-Class Inverted Stippling

CHRISTOPH SCHULZ∗, University of Stuttgart, Germany
KIN CHUNG KWAN†∗, University of Konstanz, Germany
MICHAEL BECHER, University of Stuttgart, Germany
DANIEL BAUMGARTNER, University of Stuttgart, Germany
GUIDO REINA, University of Stuttgart, Germany
OLIVER DEUSSEN, University of Konstanz, Germany
DANIEL WEISKOPF, University of Stuttgart, Germany

(a) Source (b) LBG [Deussen et al. 2017] (c) Our inverted stippling
Fig. 1. Multi-class inverted stippling uses black and white stipples to explicitly render positive and negative spaces. The cut-outs show that our method preserves
fine details better than previous work and that the background is less noisy. Source image credit: “Memorial Church” by Paul Debevec. Used with permission.

We introduce inverted stippling, a method to mimic an inversion technique
used by artists when performing stippling. To this end, we extend Linde-
Buzo-Gray (LBG) stippling to multi-class LBG (MLBG) stippling with mul-
tiple layers. MLBG stippling couples the layers stochastically to optimize
for per-layer and overall blue-noise properties. We propose a stipple-based
filling method to generate solid color backgrounds for inverting areas. Our
experiments demonstrate the effectiveness of MLBG in terms of reducing
overlapping and intensity accuracy. In addition, we showcase MLBG with
color stippling and dynamic multi-class blue-noise sampling, which is possi-
ble due to its support for temporal coherence.

∗Joint first authors
†Corresponding Author.

Authors’ addresses: Christoph Schulz, University of Stuttgart, Stuttgart, Germany,
Christoph.Schulz@visus.uni-stuttgart.de; Kin Chung Kwan, University of Konstanz,
Konstanz, Germany, kin-chung.kwan@uni-konstanz.de; Michael Becher, University of
Stuttgart, Stuttgart, Germany, Michael.Becher@visus.uni-stuttgart.de; Daniel Baum-
gartner, st141786@stud.uni-stuttgart.de, University of Stuttgart, Stuttgart, Germany;
Guido Reina, University of Stuttgart, Stuttgart, Germany, Guido.Reina@visus.uni-
stuttgart.de; Oliver Deussen, University of Konstanz, Konstanz, Germany, Oliver.
Deussen@uni-konstanz.de; Daniel Weiskopf, University of Stuttgart, Stuttgart, Ger-
many, Daniel.Weiskopf@visus.uni-stuttgart.de.

CCSConcepts: •Computingmethodologies→Non-photorealistic ren-
dering; Image processing.

Additional Key Words and Phrases: Stippling, Negative space, Voronoi Dia-
gram, Linde–Buzo–Gray-Algorithm, Sampling

1 INTRODUCTION
Stippling is an illustration technique that emulates shading using
a large number of well-placed dots; it is heavily used by artists
and illustrators. Previous research on computer-generated stipple
illustrations (see the survey by Martín et al. [2017]) led to pleasing
results, but the problem remains that dots often cannot represent
structures in the areas of high stipple density well; unwanted pat-
terns appear in these areas. In this paper, we improve the quality of
these areas by mimicking a technique used by artists: inversion.

In dark areas, since gaps between stipples are more visually promi-
nent than the stipples themselves, artists often distribute these gaps
deliberately to convey the impression of fine details. They create
the effect of negative space by filling an area with dense stipples for

245:2 • Christoph Schulz, Kin Chung Kwan, Michael Becher, Daniel Baumgartner, Guido Reina, Oliver Deussen, and Daniel Weiskopf

a solid black background and leaving white gaps to represent fine
details. This creates an illusion of using both black and white stip-
ples (Figure 2). Martín et al. [2011] also documented this inversion
technique.

However, existing stippling methods [Balzer et al. 2009; Deussen
et al. 2000, 2017; Hiller et al. 2003; Secord 2002] cannot achieve
inversion, as they cannot control stipple gaps for negative space. To
accomplish inversion in computer-generated stippling, we create
stipples with the background color to explicitly “draw” the nega-
tive space. In other words, we stipple with both black stipples and
white stipples. We also mimic the filling process of artists: we fill
the background (i.e., gaps between stipples) to create a solid color
background for the negative and positive space (Figure 1(c)). We
call this method inverted stippling.
Inverted stippling can preserve fine details and dark intensities

and involves two classes of stipples (positive and negative). This is
challenging since existing methods only work on a single class. In
this paper, we extend Linde-Buzo-Gray (LBG) stippling [Deussen
et al. 2017] to support multiple classes. We name it multi-class LBG
(MLBG) stippling. This method uses multiple layers to process in-
dividual stipple classes and couples the layers using a stochastic
approach. By doing so, we maintain the blue-noise property for
the individual stipple sets of each class (within-class) and for the
combined set of all classes (cross-class). To further improve the
quality of our results, we refine the rendering order of stipples to
tackle overdraw and fill the remaining holes in the background with
a subsequent stippling pass. This stippling pass ensures that our
generated results are purely composed of stipples.

Multi-class stippling is flexible and therefore can readily achieve
versatile stippling effects that go beyond traditional stippling such
as color stippling (Figure 14), where different base colors are used.
Our experiments show that inverted stippling preserves the density
in dark areas well and generates clean stippling results. Our analyses
demonstrate that our coupling design effectively reduces the overlap
of stipples, and that our method improves the representation of high-
density areas. We also showcase our multi-class approach using
different applications such as object distribution and visualizations.
Furthermore, MLBG stippling inherits the temporal coherence and
adaptive stipple numbers from LBG stippling. Thus, it represents
also a multi-class blue-noise sampling method that is temporally
coherent and does not require any input of the number of sample
points.
Our main contributions are as follows: 1) We model a stippling

technique from artists, inversion, for computational stippling. 2)
We introduce MLBG stippling for multi-class blue-noise sampling
with temporal coherence. 3) We present a stochastic layer coupling
approach to maintain both within-class and cross-class blue noise
properties.

2 RELATED WORK
Black-and-White Stippling. Deussen et al. [2000] presented a stip-

pling method using Lloyd’s algorithm [1982], a Voronoi-based op-
timization, to fill user-selected regions with stipples. Many works
followed this idea. Secord [2002] added weights to incorporate inten-
sity values from input images to guide stipple placement. Hiller et al.

Fig. 2. Inversion in a famous stippling example. It contains illusions of “white
stipples” in the image. Image credit: “Pickerel Frog” by Karen J. Couch. The
image is in public domain.

[2003] proposed using simple shapes instead of rounded stipples to
perform stippling. Balzer et al. [2009] constrained all stipples to the
intensity of the respective Voronoi cell. Deussen et al. [2017] added
the idea of Linde-Buzo-Gray (LBG) optimization, adding splitting
and merging operations, to Lloyd’s optimization.

Other stipplingworks used different approaches. Kopf et al. [2006]
proposed Wang tiles that contain predefined blue-noise point sets.
Tiling these tiles creates stippled images. Mould [2007] transformed
an image into a grid-shaped graph data structure and placed the
stipples using Dijkstra’s algorithm [1959]. Pang et al. [2008] used
simulated annealing to generate halftoning images andmeasured the
quality using structural similarity index measure (SSIM). Kim et al.
[2009] formulated stippling as a texture synthesis problem using real
artworks as texture examples. Martín et al. [2010; 2011] followed
this idea. They generated resolution-dependent stipple images using
an example-based halftoning technique with hand-drawn stipple
dots examples. Li and Mould [2011] used error diffusion [Floyd and
Steinberg 1976] to place stipples. They used a priority order to draw
stipples in extreme regions first (i.e., both highest density and low-
est density). Unlike our higher-density-first rendering order, their
order is for minimizing error. Rendering order has zero impact in
single-class stippling. Fattal [2011] modeled stipples with a kernel
density function and fit these kernels into images to approximate
the density. Ma et al. [2018] used incremental Voronoi sets (IVS)
to improve computing performance. Since it is hard to represent
pure dark colors in stippling due to the gaps, Azami et al. [2019]
presented a method that is analogous to ours. They combined stip-
ples with filled polygon to produce pure dark areas. However, they
filled all the gaps with black in this dark area and could not achieve
negative space effects. Although there is a large number of stippling
works, they mainly focus on black stipple layouts. None of them
can explicitly control the stipple gaps to create negative space. Most
importantly, they are single-class supported, making them not ap-
plicable for inverted stippling. For more detail, we refer readers to a
comprehensive survey by Martín et al. [2017].

Multi-Class Inverted Stippling • 245:3

Fig. 3. Overview of our inverted stippling. Our MLBG method places stipples for multiple classes in different layers individually, and couple the layers during
optimization. A rendering process for inverting backgrounds is then performed to determine rendering order and fill the remaining gaps. By varying stipple
size, we can generate inverted stippling with different resolutions. Input image was created by SungYe Kim [Kim et al. 2009]. Used with permission.

Color Stippling. Existing color stippling works [Houit and Nielsen
2011; Jang and Hong 2005; Ma et al. 2019] typically use black-and-
white stippling methods followed by coloring each dot. Another
straightforward approach uses error diffusion [Floyd and Steinberg
1976] to color the stipples from a black-and-white stippled result.
Although these post-coloring methods support multiple colors, they
cannot maintain the within-class blue-noise property of the points
as being single-class methods. In inverted stippling, most of the time,
only one class is visible in a region (Figure 1(c)). Using such post-
coloring approaches causes uneven distribution of visible stipples
in inverted stippling whereas our method does not.

Multi-class Sampling. Another kind of related work is multi-class
blue-noise sampling. Wei [2010] generated multi-class blue-noise
distributions using dart throwing [Cook 1986]. Chen et al. [2012]
presented a variational capacity-constrained Voronoi tessellation.
Jiang et al. [2015] used smoothed particle hydrodynamics (SPH) to
compute particle distributions as fluid. Qin et al. [2017] presented
another relaxation method using constrained Wasserstein barycen-
ters. Ecormier-Nocca et al. [2019] use the pair correlation function
(PCF) to measure the blue noise distributions property in gradient
descent. Although these methods support multiple classes, they
require an input number of samples. However, it is hard for users to
determine the numbers of stipples when there are multiple classes of
stipples. Thus, these methods are not suitable for inverted stippling.
In contrast, our MLBG method has no requirements regarding a
predefined number of samples and it is temporally coherent.

3 INVERTED STIPPLING
Inverted stippling uses black and white stipples (i.e., two classes)
to explicitly “draw” negative space. To this end, we extend Linde-
Buzo Gray (LBG) stippling [Deussen et al. 2017] to multi-class LBG
(MLBG) stippling. We briefly introduce LBG stippling first and then
describe our extension.

(a) Independent (b) One-class (c) Ours
(18.4%, 18.4%) (0.0%, 25.7%) (9.3%, 10.4%)

Fig. 4. Stippled image for two classes (black and white) using different
approaches. The overlap areas () and gap areas () are highlighted. Per-
centages of overlap and gap areas for the bottom images are in brackets.

3.1 LBG Stippling
Given a target density map (i.e., image intensity) and a range of
stipple sizes, LBG stippling starts with one or several randomly
distributed stipples (one in our implementation) on the canvas. It
calculates a Voronoi diagram from the stipples and determines the
required stipple sizes to represent the target intensity within their
Voronoi cells. All stipples are first moved toward the centroid of
their Voronoi cells. This process is also known as Centroidal Voronoi
Tessellation (CVT) in Lloyd’s algorithm [1982]. CVT equalizes the
distances between stipples and thus establishes the blue-noise prop-
erty [Schlömer and Deussen 2011; Wei and Wang 2011]. Then, if a
stipple is too large (i.e., excessive intensity) to represent the target
intensity within its Voronoi cells, it is split into two. If it is too small
(i.e., insufficient intensity), it is removed. The algorithm iterates un-
til no more splitting or removal happens, or the maximum number
of iterations is reached.
In contrast to Lloyd’s method, LBG stippling does not require a

predefined number of stipples. The algorithm can determine the

245:4 • Christoph Schulz, Kin Chung Kwan, Michael Becher, Daniel Baumgartner, Guido Reina, Oliver Deussen, and Daniel Weiskopf

(a) Without coupling (b) Without ordering (c) Ours
Fig. 5. The influence of our processing steps on visual quality.

number of stipples automatically. This characteristic makes LBG
stippling more intuitive for users, as it is not easy to determine such
a number for arbitrary images. However, LBG stippling supports
only a single class of stipples.

3.2 Multi-class LBG Extension
As mentioned above, for representing negative space, we need to
extend LBG to MLBG stippling, which uses multiple layers. The
layers are canvases of the same size, each for one class of stipples. For
black-and-white inverted stippling, we need two layers: one creates
positive space (black stipples), and one creates negative space (white
stipples). In this case, we use the input image intensity and its
inverted version as the density maps for each layer (Figure 3(a)).

One straightforward way would be to generate a stippled image
for each layer independently using LBG stippling and then overlay
the results. However, this independent approach cannot establish a
cross-class blue-noise property (Figure 4(a)) and results in consider-
able overlaps with other layers (18.4%) due to missing inter-class
correlation. Wei [2010] observed similar issues and concluded that
generating classes together is more desirable. We can establish a
cross-class blue-noise property by simply coupling all stipples to-
gether and processing them as one class. This, however, fails to
create stipples in isolated regions (e.g., missing dots for eyebrows
and teeth in Figure 4(b)) since stipples from different classes block
each other. This problem is also known as the conflict of Voronoi di-
agrams [Qin et al. 2017]. Furthermore, it disregards the within-class
blue-noise property of each class of stipples.
To overcome this issue, we introduce a stochastic optimization

strategy: for each layer 𝑙 , we compute a within-class Voronoi dia-
gram𝑉𝑙 using the individual stipples in this layer. Also, we combine
the stipples of all layers and compute a cross-class Voronoi diagram
𝑉𝐺 (Figure 3(c)). With these two Voronoi diagrams, each stipple has
two potential centroids: the within-class centroid 𝐶𝑙 and the cross-
class centroid 𝐶𝐺 from 𝑉𝑙 and 𝑉𝐺 , respectively. Moving stipples to
𝐶𝑙 enhances the within-class blue-noise characteristics, whereas
moving to 𝐶𝐺 enhances the cross-class blue-noise characteristics.
Now, we randomly move each stipple to either 𝐶𝑙 or 𝐶𝐺 based on
a probability 𝑃 to balance within-class and cross-class blue-noise
characteristics. Lastly, we split or remove the stipples as in LBG
(Section 3.1). Putting it all together is our MLBG, shown in Algo-
rithm 1.

ALGORITHM 1:Multi-class Linde-Buzo-Gray stippling
Input :Layers 𝑙0...𝑛 ∈ 𝐿

Range of stipple sizes [𝑟0, 𝑟1]
Output :Set of all stipples for each layer 𝑆0...𝑛
Initialize 𝑆0...𝑛 with random positions
repeat

𝑉𝐺 ← Voronoi diagram of 𝑆0...𝑛
for each layer 𝑙 ∈ 𝐿

𝑉𝑙 ← Voronoi diagram of 𝑆𝑙
for each stipple 𝑠 ∈ 𝑆𝑙

𝐶𝑙 ← centroid of Voronoi cell 𝑉𝑙 (𝑠)
𝐶𝐺 ← centroid of Voronoi cell 𝑉𝐺 (𝑠)
Move 𝑠 to either 𝐶𝑙 or 𝐶𝐺 based on probability 𝑃
Choose a new size within [𝑟0, 𝑟1] for stipple 𝑠
if insufficient intensity then split 𝑠 in two
if excessive intensity then remove 𝑠

until stable or maximum iterations reached

(a) Red first (b) Blue first (c) Ours
Fig. 6. (a) and (b) Some stipples drawn first are barely visible due to overdraw.
(c) Our rendering approach avoids this issue.

Concerning the probability 𝑃 , we found in our experiments that an
adaptive value based on stipple density works best. In inverted stip-
pling, higher-density stipples often become invisible in our results
due to the stipple rendering process (Sections 3.3 and 3.4). View-
ers can only perceive the lower-density stipples (e.g., Figure 5(c)),
the within-class blue-noise property of these stipples contributes
most to the visual quality. Thus, lower-density stipples should have
higher chances of moving toward their within-class centroids to
increase within-class blue-noise characteristics. In contrast, higher-
density stipples should move more often toward their cross-class
centroids to keep away from lower-density stipples and reduce over-
lap. Specifically, we set the probability for a stipple to move toward
its within-class centroid as 𝑃 = 𝐷−𝑑𝑙 , where𝐷 is the sum of average
densities of all layers within its Voronoi cell, and 𝑑𝑙 is the average
density of its layer 𝑙 within its Voronoi cell. Here, the density is the
intensity value of the provided density map. Note that 𝐷 = 1 for
black-and-white inverted stippling. We clamp 𝑃 if it exceeds one.
Figure 5(a) shows an example of inverted stippling without sto-

chastic coupling. The inter-class overlap generates many crescent-
shaped artifacts. Our method suppresses these overlaps and thus
results in better quality.

3.3 Density-based Rendering Order
Once we have a stipple placement, we can render the stipples in any
order. However, this may not generate a visually pleasing image
due to overdraw (Figure 5(b)). Similar to transparency in traditional

Multi-Class Inverted Stippling • 245:5

(a) (b) (c)
Fig. 7. Our background-filling approach. (a) Gaps are formed by stipples.
(b) We render the stipples in white on a black background to generate an
intermediate density map. (c) Apply LBG stippling to place new stipples
and draw them at the back of (a).

ALGORITHM 2: Background filling
Input :Set of foreground stipples 𝑆

Inputted image 𝐼 and its inverted version 𝐼 ′

Maximum stipple size 𝑟
Output :Set of background stipples 𝐵

Gap mask 𝐺 ← render 𝑆 in white on black background
Copy 𝑆 to 𝐵
Set the sizes of stipples in 𝐵 as 𝑟
repeat

𝑉 ← Voronoi diagram of 𝐵
for each stipple 𝑠 ∈ 𝐵

Move 𝑠 to centroid of 𝑉 (𝑠)
if 𝑠 cannot cover all gaps in 𝑉 (𝑠) then split 𝑠 in two
if 𝑉 (𝑠) cover no gap then remove 𝑠
𝑖 ← total intensity of 𝐼 in 𝑉 (𝑠)
𝑗 ← total intensity of 𝐼 ′ in 𝑉 (𝑠)
if 𝑖 ≤ 𝑗 then

Color of 𝑠 ← black
else

Color of 𝑠 ← white
until no split or remove happened

rendering, the drawing order of the stipples influences their visual
quality.
Thus, we process our stippling results by establishing a better

rendering order (Figure 3(e)): by observation, we found that it is
preferable to place sparse stipples in front of densely distributed
stipples (Figure 6). The rationale behind this is that the visual effect
of overlaps at low-density stipples is visually more pronounced than
that at high-density stipples. Therefore, we should avoid overdraw
on the low-density stipples. To this end, we first sort all the stipples
by their descending average density within their respective cell
in the within-class Voronoi diagram. Higher-density stipples are
drawn first and never overlap the lower-density stipples.

3.4 Background Filling
Our MLBG stippling already generates a good multi-class stippling
distribution. However, similar to all existing stippling methods, it is
hard to represent solid colors due to the remaining gaps between
stipples (Figure 8(a)). Artists typically fill the canvas with dense stip-
ples to create solid backgrounds. We mimic this technique and fill

(a) Before filling (b) After filling
Fig. 8. The remaining gaps (a) make the stipples hard to represent solid
background. Our filling (b) make the image cleaner.We recommend zooming
in to identify the gaps.

the remaining gaps between stipples for inverting backgrounds (Fig-
ure 3(f)). This could be done by filling the corresponding Voronoi
areas. However, since stippling is a technique to create images using
stipple primitives only, we want our inverted stippling to stay in this
spirit—especially as users may require primitive representations,
e.g., for engraving applications. Thus, we fill the gaps by adding
new stipples (background stipples) below the existing stipples (fore-
ground stipples), such that the background will not affect the layout
by overlapping the foreground. Note that covering all the gaps with
a minimum number of stipples can be NP-complete (depends on the
primitive). Thus, we try our best to minimize the number of stipples
rather than finding an optimal solution.

Our greedy approach for solving this polygon covering problem
is another stippling pass (illustrated in Figure 7). Algorithm 2 shows
our filling algorithm. We first render all foreground stipples in white
(i.e., zero density) on a black background (i.e., highest density) to
obtain a new density map (a gap mask). This allows us to mask out
unnecessary areas. We then perform a single-class LBG stippling
pass on this gap mask. We copy the existing foreground stipples to
initialize the background stipples, as it is very likely that every fore-
ground stipple requires one or more background stipples to cover
all of its surrounding gaps. While this already gives good results,
we modify the split/remove conditions for our filling purpose: If a
Voronoi cell of a background stipple covers none of the black areas
(i.e., zero total density), we remove the background stipple. If a back-
ground stipple cannot cover all the gaps in its cell (i.e., black areas
remain outside the stipple ink), the stipple will be split into two.
In our current implementation, the size of all background stipples
is set to the maximum allowed size, which allows us to keep the
number of background stipples low. Alternatively, the size can be
varied depending on the application. Then, for each background
stipple, we identify the layer with the highest density of the original
density maps within its Voronoi diagram cell and use its color for
the stipple. Finally, we insert these background stipples so that no
stipple from the previous pass is overdrawn (Figure 8(b)).

According to our experiments, the first iteration of our filling can
remove around 95% of the gaps, and only 0.1% remain after three
iterations in most cases. Although we can sort background stipples
as we did for the foreground, it does not have a noticeable impact on
visual quality in our experiments. The potential reason for this can
be that most background stipples are overdrawn and less obvious
in small background areas.

245:6 • Christoph Schulz, Kin Chung Kwan, Michael Becher, Daniel Baumgartner, Guido Reina, Oliver Deussen, and Daniel Weiskopf

(a) Source (b) CCVT [Balzer et al. 2009] (c) RWT [Kopf et al. 2006]
9.7k stipples (size: 2–4) 79.5k stipples

(d) IVS [Ma et al. 2018] (e) LBG [Deussen et al. 2017] (f) Ours
1.3k stipples (size: 3) 8.2k stipples (size: 2–4) 9.7k(B)+18.4k(W)+18.6k(BG) (size: 2–4)

Fig. 9. Examples of black-and-white stippling using different selected methods. Note the differences in brightness and contrast. Image (b) was generated using
StippleShop [Martín et al. 2017]. Images (c)-(e) were generated using the demo programs provided by Kopf et al. [2006], Ma et al. [2018], and Deussen et al.
[2017], respectively. The labels (B), (W), and (BG) under our result (f) mean black stipples, white stipples, and background stipples, respectively. Source (a) was
created by SungYe Kim [Kim et al. 2009]. Used with permission. More comparison images can be found in our supplemental material.

(a) Source (b) RWT [Kopf et al. 2006] (c) Ours
Fig. 10. Another comparison with RTW by Kopf et al. [2006]. Figures (a) and (b) originate from their work. Used with permission.

Multi-Class Inverted Stippling • 245:7

(a) Source (b) WCVD [Secord 2002] (c) CCVT [Balzer et al. 2009] (d) Ours
Fig. 11. Another example of black-and-white stippling. Figures (b) and (c) are from the respective papers. Source image credit: “Plant” by Adrian Secord. Used
with permission.

(a) Source (b) CAS (c) Ours
Fig. 12. Comparison with CAS [Li and Mould 2011]. Source (a) originates
fromMould [2007]. Figure (b) is from the CAS paper by Li and Mould [2011].
Used with permission.

Fig. 13. An example of our black-and-white inverted stippling and respective
source images. The cat face features a fur texture and delicate whiskers.
Source image credit: Pixabay user Alexas_Fotos. Used with permission.

Alternatively, when primitive representation is not required (e.g.,
rendering in pixel format), one can fill gaps using the layer color of
the highest density within the gap. The difference is barely notice-
able, but filling provides benefits regarding efficiency.

4 RESULTS
This section shows results and reports on our evaluations. Our CPU-
based experiments ran on a PC with an AMD Ryzen 7 5800X CPU,
whereas our GPU-based experiments ran on a PC with an Intel
Core i7-6700 CPU and an NVIDIA GTX 1070 GPU. Our implementa-
tion was done in C++ and CUDA.

4.1 Result Images
Figures 1, 9, and 13 show examples of black-and-white inverted
stippling. As demonstrated in Figure 1, original LBG stippling can-
not represent dark regions well. The stippling looks brighter than
the input because of white gaps in supposedly dark areas. In Fig-
ure 9, we compare our approach to other black-and-white stippling
methods. We used StippleShop, a tool provided by Martín et al.
[2017] for stippling benchmarks, to generate some of the compari-
son images. StippleShop is used for comparison in their additional
material [Martín et al. 2017]. Note that using too many small stipples
will lead to grayscale-like images, which is unwanted for stippling.
It is hard to determine the stipple number for the existing stippling
methods. Most of the methods cannot represent dark regions using
ordinary parameter settings. Some methods can create solid color
in dark regions by using a huge number of black stipples [Kim et al.
2009; Secord 2002]. However, they will also dim bright areas and
cannot represent fine details in dark areas. To have a fair compari-
son, we tried our best to keep the stipples with similar density, and
then carefully fine tune the parameters to obtain the best visual
quality. Besides preserving the overall brightness, our result appears
clearer than the other techniques since we can represent certain
image features more directly due to inversion.

The sources in Figures 9, 10, 11, and 12 are the stippling examples
also used in previous works. We included the comparisons with the
images from the respective original paper. The stippled images from
these other papers usually cannot well represent the original inten-
sity. Please see our supplemental material for a more comprehensive
comparison.
Figure 13 shows more results. Our negative space in inverted

stippling well preserves the structures of the cat whiskers. The
white thin structures are hard to represent using pure black dots.
Our inverted stippling can represent both bright objects and dark
objects, which is challenging for traditional stippling. Moreover,
the blurry edge at the background shows the smooth transition of
different classes of stipples.

4.2 Color Stippling and Flexible Shapes
Besides black-and-white stippling, MLBG stippling allows us to cre-
ate color stippling. For this, we need a reference color image and a
user-provided color palette, which can be arbitrary. Alternatively,

245:8 • Christoph Schulz, Kin Chung Kwan, Michael Becher, Daniel Baumgartner, Guido Reina, Oliver Deussen, and Daniel Weiskopf

Fig. 14. Examples of color stippling results (left and right), source images, and used color palettes (middle). The fire uses circles only. The toucan exhibits a
variety of non-traditional stipple shapes. We recommend zooming in to identify the various stipple effects. Source image credits: (Left) Tambako The Jaguar
(https://www.flickr.com/photos/tambako/). (Right) Pixabay user Alexas_Fotos. Both used with permission.

(a) Source and selected colors (d) with CMYKW
Wei [2010]

(b) with selected colors (e) with CMYKW
LBG with error diffusion coloring.

(c) with selected colors (f) with CMYKW
Our MLBG stippling

Fig. 15. Comparison of different methods and different colors for color
stippling. Neither LBG with post-hoc error diffusion nor plain multi-class
stippling generate clean results as our inverted stippling. Source image
credit: Pexels user Cedric Lim Ah Tock. Used with permission.

one could apply a palette extraction method to select colors auto-
matically. Based on the colors provided, we decompose the color
image into contribution layers using existing color decomposition
methods [Tan et al. 2018]. These contribution layers are used as
input density maps for our method. We use the same number of
layers as the provided colors, as our MLBG naturally supports more
than two classes. Unfortunately, non-obvious colors may have small

(a) Source (b) Without filter (c) With filter
Fig. 16. Small contributions of colors accumulate and result in noisy stipples.
Source image credit: Pixnio user Milivojevic (CC0).

contributions in some areas of the image. These small contribution
values will accumulate and results in noisy stipples (Figure 16(b)).
Although this problem also occurs in single-class stippling, the re-
sults are visually acceptable when the number of classes is small.
For color stippling with more than two classes, this problem is more
serious. To work around this issue, we clamp values that contribute
less than a threshold (~10% in our case) and use a median filter to
smooth the inputted image (Figure 16(c)).
Figure 14 shows color stippling results. We can determine the

orientation of stipples by the second moment of their Voronoi cell
or other data maps (e.g., vector field (Figure 22(b)), or edge tangent
flow [Kang et al. 2007]) depending on the applications. It is worth
noting that Reinert et al. [2013] recommended using a signed dis-
tance function (SDF) to compute Voronoi diagrams for primitives
with variant sizes and shapes, as it reduces overlap. We followed
this recommendation and used SDF for our Voronoi diagrams. In
Figure 15, we compare our inverted color stippling to other methods:
LBG stippling with an additional post-hoc coloring using error dif-
fusion approach, and the method of Wei [2010]. Manually selected
colors and CMYKW colors are used for comparisons.

4.3 Layer-Coupling Scheme
We studied four layer-coupling schemes in terms of how they affect
the quality of the results: 1) Interlaced: we consider the within-class
Voronoi diagram in odd iterations and the inter-class one in even
iterations. 2) Random per iteration: at the start of each iteration, we

Multi-Class Inverted Stippling • 245:9

Fig. 17. Overlap for different coupling schemes, configurations, and stipple
sizes (in brackets). The lines represent the min-max values, and the dots are
their means.

randomly chose within-class or inter-class Voronoi diagram, and
all stipples consider the same Voronoi diagram in this iteration. 3)
Random per stipple: similar to the previous case, except that we ran-
domly chose within-class or inter-class for each stipple individually.
4) Density-based: selection as described in Section 3.2.

For this experiment, we use a 1024×1024 input image in two con-
figurations, each consisting of two classes. One has equal densities,
which are 0.33 (“Equal”). The other has unequal densities, which are
0.11 and 0.55 (“Diff.”). An ideal result should show zero overlap and
around 33% gap area. We ran MLBG stippling using the different
schemes and different stipple sizes, each 40 times, and measured the
inter-class overlap in pixels.
Figure 17 shows the statistics of the experimental results. The

stipple size has nearly no impact on the overlap of the results. For
the equal-density configuration (“Equal”), the average overlap for
interlaced, randomper iteration, randomper stipple, and our density-
based are 2.07%, 3.11%, 2.90%, and 1.98%, respectively. The density-
based approach shows a lower overlap than the other schemes,and
we found a significant improvement (paired t-tests 𝑝 < 0.05) of
the density-based scheme compared to random per iteration and
random per stipple. Surprisingly, the interlaced scheme generates
better results than these two as well. Although there is no significant
improvement (repeated measures ANOVA (𝐹 (2, 234) = 1.15, 𝑝 =

0.32)) between density-based and interlaced for the equal-density
configuration, interlaced has a bias toward within-class or inter-
class blue noise, depending on the last iteration being even or odd.
Interlaced and random per iteration have higher ranges of overlap,
which implies that they may stop in local optima.

For the case with different densities (“Diff.”), we found a signifi-
cant improvement (paired t-tests 𝑝 < 0.01) from the density-based
scheme to all the other schemes. Their average overlaps are 2.10%,
2.60%, 2.47%, and 0.81%, respectively. This shows that our density-
based coupling scheme is effective in reducing overlaps.

4.4 Density Representation
Existing stippling methods often cannot represent the density of an
input image well. We demonstrate the ability of our method to do
so by a quantitative experiment: A good method should accurately
render all stipple densities with correct intensity (i.e., black-to-white
ratio). Thus, we stipple a linear gradient with 2048×1600 pixels using
different methods, and then examine the black-to-white pixel ratio
of each column of the stippled results and compare it against the
ground truth grayscale value. For a fair comparison, we set the

Fig. 18. Representation error between target density and achieved density:
The zero line is ideal. Inverted stippling exhibits the smallest average error
and the most balanced representation over the entire range of densities.

number of stipples for Lloyd’s method to the stipple number we
automatically obtain using the LBG-based methods. The stipple size
is 4 pixels for all methods. Figure 18 shows their relative errors
between the ideal intensity and the measured intensity, where zero
in the middle means no error. To improve readability, we smooth
the measurements using a window of 32. In the dark region, the
errors of all methods increased, while our inverted stippling has
the lowest error in this region. It is also interesting to note that
the error of our method has a smooth change in sign at the middle
(50% brightness). This change shows where background colors are
inverted. The absolute error is small in this region, and thus we can
hide the transition of the backgrounds.

4.5 Blue-Noise Property
It is a community standard to visualize the quality of blue noise
using Fourier analysis [Schlömer and Deussen 2011]. Following this
standard, we stipple a uniform square with two classes, each at
25% density, using different approaches. Figure 19 compares the
resulting images in the spatial and frequency domains. The post-
coloring approach using error diffusion after LBG performs worst
since it cannot maintain within-class blue noise. This results in un-
even stippling for the individual classes. The independent approach
shows blue-noise characteristics for the individual layers, but the
inter-class blue noise has a low signal-to-noise ratio. Our stochastic
coupling shows blue-noise characteristics for the individual layers,
with a better inter-class blue noise than independent.

Figure 20 illustrates the blue-noise property of traditional stip-
pling and inverted stippling in dark areas. The irregular small gaps
in traditional stippling degrade the blue-noise property, whereas
our inverted stippling maintains the blue-noise property better.

4.6 Performance
Table 1 summarizes the information and timing statistics of our
results shown in this paper. The number of gap stipples is usually
larger than the one of black stipples and white stipples. If an image
has a black background, this number will be much larger as we
assume that the canvas is in white in our experiments. The CPU
times and GPU times in the table represent the individual execu-
tion times using our CPU-based implementation and GPU-based
implementation, respectively. In our CPU-based implementation,
background filling takes 14% to 68% of theMLBG stippling execution
time. As expected, the GPU implementation is faster than the CPU
implementation and achieves a close-to interactive rate.

245:10 • Christoph Schulz, Kin Chung Kwan, Michael Becher, Daniel Baumgartner, Guido Reina, Oliver Deussen, and Daniel Weiskopf

(a) Post-coloring (b) Independent (c) Ours
Fig. 19. Uniformly stippled squares in the spatial domain (top row) and
frequency domain (bottom row). And the one of their individual layer. Dif-
ferent methods are compared. Ideal blue noise has a clear repeating ring
(rings decay from inside to outside) and isotropic properties (low variation
within the rings).

(a) Traditional (b) Inverted
Fig. 20. Comparison of blue noise between traditional stippling (a) and
inverted stippling (b) using a uniform dark area.

Here, we also evaluate the performance of MLBG stippling using
GPU acceleration. We could not find a change in the convergence
rate of our MLBG stippling compared to LGB stippling. Also, we
could not find a correlation with density per layer. Thus, we will
only consider total execution time for this discussion.

Figure 21 shows how our GPU-based implementation scales with
layer count, image pixels, and stipples regarding the number of iter-
ations and execution time. The number of layers has less influence
than the number of pixels and the number of stipples. Outliers can
be attributed to early termination.

5 DISCUSSION
This section discusses several issues of our method: temporal coher-
ence, applications, multi-class sampling, and transferability to other
methods.

Table 1. The timing statistic of our MLBG. (B): Black, (W): White, (BG):
Background, (S): Stippling, (R): Rendering.

Figure 1 9(f) 10(c) 11(c) 12(c) 13

Resolution 1.0k×1.5k 1.0k×1.0k 0.9k×0.9k 1.0k×1.0k 0.8k×0.8k 0.8k×0.8k
Stipple Size 2–3 2–4 2–4 2–4 2–3 2–4
#Stipple (B) 33,573 9,712 7,806 7,601 25,185 11,295
#Stipple (W) 31,392 18,434 14,975 16,992 20,885 14,975
#Stipple (BG) 88,565 18,683 12,067 11,836 53,740 24,409
CPU Time (S) 19.8s 12.3s 8.3s 9.3s 14.9s 4.8s
CPU Time (R) 7.8s 3.4s 2.4s 2.8s 7.4s 0.7s
GPU Time (S+R) 5.8s 1.7s 2.1s 3.1s 1.0s 2.1s

Fig. 21. Execution time correlated with layer count, pixel count, and stipple
count. The Pearson index is shown in the upper left of each plot. The red
line shows linear regression.

5.1 Temporal Coherence
LBG stippling is temporally coherent due to its relaxation process
and the adaptive stipple number mechanism. MLBG stippling main-
tains all these properties and thus is temporally coherent as well.

To demonstrate this, we created a stippled animation with multi-
class stippling (not inverted stippling). For each frame, we use stip-
ples from the immediately preceding frame to initialize the stippling.
Then, we run two to three iterations of MLBG stippling to update the
scene. Note that we disabled our ordering process for every frame
in animation as it is not temporally coherent. We only determine
the rendering order of a stipple once when they are generated. For-
tunately, the movement for stipples makes the ordering problems
less obvious.
Our animation shows the tides of an island. All stipples move

smoothly between the gaps of the others to avoid overlaps, and the
stipples of the sea spawn toward the middle and cover the island
without any sudden changes. This animated effect is problematic for
existing stippling methods without an adaptive stippling number.
We refer the reader to the supplemental video for the animated
effect.

5.2 Applications
To demonstrate the broad applicability of our MLBG stippling, we
showcase four different examples: object distribution, vector field
visualization, visualization with transparency, and multivariate de-
mographic map.

One common application for multi-class sampling is object distri-
bution. Given density maps and masks, our method can distribute
objects to generate compelling images (Figure 22(a)) for artistic use.
Another application is vector field visualization. Our method can
create a joint visualization of multiple vector fields in one image by

Multi-Class Inverted Stippling • 245:11

(a) Object distribution (b) Vector field visualization (c) Visualization with transparency (d) Multivariate demographic map
Fig. 22. Four applications for our method: (a) the method can be used for mixing object distributions (e.g., trees in forests, people in a crowd, artistic usages);
(b) in scientific visualization, vector fields can be mixed and overlaid, and both fields are still visible; (c) in contrast to alpha blending (left), MLBG stippling
(right) allows keeping colors and distribution variations in two overlaid classes; (d) we can visualize multivariate data by distributing blue-noise colored
stipples on maps. We recommend zooming in to identify the details.

Table 2. The difference of multi-class sampling methods. “Dart.” for dart
throwing. “Relax.” for relaxation. “Ad.” for adaptive. “Tem. Co.” for temporal
coherence.

Method Type #Stipple Tem. Co. GPU

Wei [2010] Dart. Fixed No Limited
Chen et al. [2012] Relax. Fixed Partial Full
Jiang et al. [2015] Relax. Fixed Partial Full
Qin et al. [2017] Relax. Fixed Partial Full
Ecormier-Nocca et al. [2019] Relax. Fixed Partial Full
Ours Relax. Ad. Yes Full

distributing multiple classes of blue-noise-distributed arrows and
aligning the orientation of arrows with the field (Figure 22(b)).

Figure 22(c) shows an example that visualizes how well the popu-
lation can access certain antennas on a map grid. Color transparency
indicates the percentage of the population. In the overlap area, al-
pha blending (left image) will unavoidably introduce unwanted new
colors (mostly gray). Since each color might have its meaning (i.e.,
class indicator), new colors are undesirable. Our stippling method
(right image) preserves the original colors of each region. Moreover,
only the dominant colors are visible in the overlap area with alpha
blending, and hence the density information is lost. In contrast, the
density information is clearly visible in our stippling result. Note
that the perception of color-mixing is different for alpha blending
and stippling. Thus, their color may be perceived differently.

Figure 22(d) shows another example of visualization of multivari-
ate demographic map; the map shows the population of people (i.e.,
density) with different ethnicity (i.e., multi-class) in a country. Our
method can clearly visualize the multi-class information in the same
figure.

5.3 Multi-class Sampling
MLBG stippling belongs to the category of multi-class blue-noise
sampling methods. Table 2 shows the differences between multi-
class sampling methods from the literature; compared to the others,
MLBG stippling is temporally coherent and does not require setting
a predefined number of samples compared to the other methods.
This is a major advantage since it is almost impossible for a user to
set a number of samples per class, and frame by frame for animation.
Dart throwing in Wei [2010] is inherently not temporally coherent.

Although the other methods allow for gradual movement of samples,
their fixed number of samples breaks temporal coherence regarding
density. Hence, these methods are unsuitable for dynamic sampling,
as the number of required samples in each frame can vary. To the best
of our knowledge, MLBG stippling is the first multi-class blue-noise
sampling method with temporal coherence. We did not compare
them in detail as it is out of the scope of this paper, but leave a
comparative study for future work.

5.4 Transferability to Other Methods
Our MLBG stippling is an extension of LBG stippling. Its key idea
is not limited to LBG but could extend to other stippling methods
using CVT, such as Lloyd’s method [1982]. We strongly believe
that one can transfer our stochastic coupling approach to these
methods. We can also apply our background-filling process to other
stippling works, e.g., [Azami et al. 2019], and approximated coverage
problems.

6 CONCLUSION
Wehave introduced a computational method for inverted stippling by
mimicking an inversion technique used by artists. Inverted stippling
uses both black stipples and white stipples for rendering positive
space and negative space. Our extension to LBG stippling [Deussen
et al. 2017], namely MLBG stippling, uses layers to obtain inverted
stippling. In this context, we have proposed a stochastic layer cou-
pling approach to achieve the blue-noise property for individual
layers and the combined layers. Finally, we have introduced a back-
ground-filling approach to achieve solid color by adding new stip-
ples. These allow us to generate stippled images with better detail
representation and better preservation of intensity in dark areas.

Limitations and Future Work. Similar to LBG, the discretization
(e.g., rasterization) in our implementation introduces inaccuracies.
Supersampling or a continuous optimization approach can improve
accuracy but is also more expensive to compute. Although there are
faster real-time stippling works, our inverted stippling still achieves
interactive frame rates with parallel GPU computation. Further
improving the performance could benefit the usability of ourmethod
for dynamic interactive cases. Our color stippling results highly
depend on the quality of density map input; it truly represents
the errors from the color decomposition, such as the non-uniform

245:12 • Christoph Schulz, Kin Chung Kwan, Michael Becher, Daniel Baumgartner, Guido Reina, Oliver Deussen, and Daniel Weiskopf

value in uniform background (Figure 14). Another limitation of our
method is that stochastic layer coupling works well only when there
are sufficient iterations. Inverted stippling may drive up the stipple
number, as it needs to render the stipples from multiple classes and
the background stipples. In our current implementation, we did not
remove the invisible stipples (e.g., white stipples on white paper),
which could be one solution. If there are only 2–3 iterations (e.g., due
to performance constraints in animation), the resulting within-class
and cross-class blue-noise properties are not fully balanced. In such
cases, we recommend using the interlaced coupling scheme with
at least two iterations. Lastly, our ordering step is not temporally
coherent. We disable this step for dynamic cases at this time. A
temporally coherent order for stippling could be interesting for
future research. In the future, we are also interested in studying
the perception quality of MLBG stippling in more detail, similar to
studies by Maciejewski et al. [2008] and Spicker et al. [2017].

ACKNOWLEDGMENTS
The authors would like to thank JochenGörtler andAngelika Knothe
for the fruitful discussions. This researchwas funded by theDeutsche
Forschungsgemeinschaft (DFG, German Research Foundation) —
Project ID 251654672— TRR 161 (Project A01 and A04), and —Project
ID 279064222— SFB 1244 (Project B05).

REFERENCES
Rosa Azami, Lars Doyle, and David Mould. 2019. Stipple Removal in Extreme-tone

Regions. In ACM/EG Expressive Symposium. https://doi.org/10.2312/exp.20191083
Michael Balzer, Thomas Schlömer, and Oliver Deussen. 2009. Capacity-Constrained

Point Distributions: A Variant of Lloyd’s Method. ACM Trans. Graph. 28, 3 (2009),
1–8. https://doi.org/10.1145/1576246.1531392

Zhonggui Chen, Zhan Yuan, Yi-King Choi, Ligang Liu, and Wenping Wang. 2012.
Variational Blue Noise Sampling. IEEE Trans. Vis. Comput. Graph. 18 (2012). https:
//doi.org/10.1109/TVCG.2012.94

Robert L. Cook. 1986. Stochastic Sampling in Computer Graphics. ACM Trans. Graph.
5, 1 (1986), 51–72. https://doi.org/10.1145/7529.8927

Oliver Deussen, Stefan Hiller, Cornelius Van Overveld, and Thomas Strothotte. 2000.
Floating Points: A Method for Computing Stipple Drawings. Comput. Graph. Forum
19, 3 (2000), 41–50. https://doi.org/10.1111/1467-8659.00396

Oliver Deussen, Marc Spicker, and Qian Zheng. 2017. Weighted Linde-Buzo-Gray
Stippling. ACM Trans. Graph. 36, 6 (2017), 1–12. https://doi.org/10.1145/3130800.
3130819

Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs. Numer.
Math. 1, 1 (1959), 269–271.

Pierre Ecormier-Nocca, Pooran Memari, James Gain, and Marie-Paule Cani. 2019. Ac-
curate Synthesis of Multi-Class Disk Distributions. Computer Graphics Forum 38, 2
(2019). https://hal.inria.fr/hal-02064699

Raanan Fattal. 2011. Blue-Noise Point Sampling Using Kernel Density Model. ACM
Trans. Graph. 30, 4, Article 48 (2011), 12 pages. https://doi.org/10.1145/2010324.
1964943

RobertW. Floyd and Louis Steinberg. 1976. An Adaptive Algorithm for Spatial Greyscale.
Proc. Soc. Inf. Disp. 17, 2 (1976), 75–77.

Stefan Hiller, Heino Hellwig, and Oliver Deussen. 2003. Beyond Stippling - Methods
for Distributing Objects on the Plane. Comput. Graph. Forum 22, 3 (2003), 515–522.
https://doi.org/10.1111/1467-8659.00699

Thomas Houit and Frank Nielsen. 2011. Video Stippling. In Adv. Concepts for Intel. Vis.
Sys. Springer, 384–395.

Seok Jang and Hyun-Ki Hong. 2005. Stippling Technique Based on Color Analysis. In
Adv. Multimedia Info. Proc. (PCM 2005). Springer, 782–793.

Min Jiang, Yahan Zhou, Rui Wang, Richard Southern, and Jian Jun Zhang. 2015. Blue
noise sampling using an SPH-based method. ACM Trans. Graph. 34, 6 (2015), 1–11.
https://doi.org/10.1145/2816795.2818102

Henry Kang, Seungyong Lee, and Charles K. Chui. 2007. Coherent Line Drawing. In
Proc. Sym. on Non-Photorealistic Animation and Rendering (NPAR ’07). ACM, New
York, NY, USA, 43–50. https://doi.org/10.1145/1274871.1274878

Sung Ye Kim, Ross Maciejewski, Tobias Isenberg, William M. Andrews, Wei Chen,
Mario Costa Sousa, and David S. Ebert. 2009. Stippling by Example. In Proceedings
of the Symposium on Non-Photorealistic Animation and Rendering (NPAR ’09). 41–50.
https://doi.org/10.1145/1572614.1572622

Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski. 2006. Recursive
Wang Tiles for Real-Time Blue Noise. ACM Trans. Graph. 25, 3 (2006), 509–518.
https://doi.org/10.1145/1141911.1141916

Hua Li and David Mould. 2011. Structure-preserving stippling by priority-based error
diffusion. In Proc. Graph. Interf. (GI 2011). Canadian Human-Computer Communica-
tions Society, 127–134.

Stuart Lloyd. 1982. Least Squares Quantization in PCM. IEEE Trans. Inf. Theor. 28, 2
(1982), 129–137.

Lei Ma, Yanyun Chen, Yinling Qian, and Hanqiu Sun. 2018. Incremental Voronoi Sets
for Instant Stippling. Vis. Comput. 34, 6–8 (2018), 863–873. https://doi.org/10.1007/
s00371-018-1541-7

Lei Ma, Hong Deng, Beibei Wang, Yanyun Chen, and Tamy Boubekeur. 2019. Real-Time
Structure Aware Color Stippling. In ACM SIGGRAPH 2019 Posters. ACM, Article 92,
2 pages. https://doi.org/10.1145/3306214.3338606

Ross Maciejewski, Tobias Isenberg, William M Andrews, David S Ebert, Mario Costa
Sousa, and Wei Chen. 2008. Measuring stipple aesthetics in hand-drawn and
computer-generated images. IEEE Comput. Graph. and Appl. 28, 2 (2008), 62–74.

Domingo Martín, Germán Arroyo, M. Victoria Luzón, and Tobias Isenberg. 2010.
Example-Based Stippling Using a Scale-Dependent Grayscale Process. In Proc.
Sym. on Non-Photorealistic Animation and Rendering (NPAR ’10). ACM, 51–61.
https://doi.org/10.1145/1809939.1809946

Domingo Martín, Germán Arroyo, Alejandro Rodríguez, and Tobias Isenberg. 2017. A
Survey of Digital Stippling. Comput. Graph. 67 (2017), 24–44. https://doi.org/10.
1016/j.cag.2017.05.001

Domingo Martín, Germán Arroyo, M. Victoria Luzón, and Tobias Isenberg. 2011. Scale-
dependent and Example-based Grayscale Stippling. Comput. Graph. 35, 1 (2011),
160–174. https://doi.org/10.1016/j.cag.2010.11.006 Extended Papers from Non-
Photorealistic Animation and Rendering.

David Mould. 2007. Stipple Placement Using Distance in a Weighted Graph. In Proc.
Eurographics (Computational Aesthetics’07). 45–52.

Wai-Man Pang, Yingge Qu, Tien-Tsin Wong, Daniel Cohen-Or, and Pheng-Ann Heng.
2008. Structure-aware halftoning. In ACM SIGGRAPH 2008 papers. 1–8.

Hongxing Qin, Yi Chen, Jinlong He, and Baoquan Chen. 2017. Wasserstein Blue
Noise Sampling. ACM Trans. Graph. 36, 5, Article 168 (Oct. 2017), 13 pages. https:
//doi.org/10.1145/3119910

Bernhard Reinert, Tobias Ritschel, and Hans-Peter Seidel. 2013. Interactive By-Example
Design of Artistic Packing Layouts. ACM Trans. Graph. 32, 6, Article 218 (2013),
7 pages. https://doi.org/10.1145/2508363.2508409

Thomas Schlömer and Oliver Deussen. 2011. Accurate Spectral Analysis of Two-
Dimensional Point Sets. J. Graph., GPU, & Game Tools 15, 3 (2011), 152–160. https:
//doi.org/10.1080/2151237x.2011.609773

Adrian Secord. 2002. Weighted Voronoi Stippling. In Proc. Sym. on Non-Photorealistic
Animation and Rendering (NPAR ’02). 37–43. https://doi.org/10.1145/508535.508537

Marc Spicker, Franz Hahn, Thomas Lindemeier, Dietmar Saupe, and Oliver Deussen.
2017. Quantifying Visual Abstraction Quality for Stipple Drawings. In Proc. Sym.
on Non-Photorealistic Animation and Rendering (NPAR ’17). Article 8, 10 pages.
https://doi.org/10.1145/3092919.3092923

Jianchao Tan, Jose Echevarria, and Yotam Gingold. 2018. Efficient Palette-based De-
composition and Recoloring of Images via RGBXY-space Geometry. ACM Trans.
Graph. 37, 6, Article 262 (2018), 10 pages. https://doi.org/10.1145/3272127.3275054

Li-Yi Wei. 2010. Multi-Class Blue Noise Sampling. ACM Trans. Graph. 29, 4, Article 79
(2010), 8 pages. https://doi.org/10.1145/1778765.1778816

Li-Yi Wei and RuiWang. 2011. Differential Domain Analysis for Non-Uniform Sampling.
ACM Trans. Graph. 30, 4, Article 50 (2011), 10 pages. https://doi.org/10.1145/2010324.
1964945

https://doi.org/10.2312/exp.20191083
https://doi.org/10.1145/1576246.1531392
https://doi.org/10.1109/TVCG.2012.94
https://doi.org/10.1109/TVCG.2012.94
https://doi.org/10.1145/7529.8927
https://doi.org/10.1111/1467-8659.00396
https://doi.org/10.1145/3130800.3130819
https://doi.org/10.1145/3130800.3130819
https://hal.inria.fr/hal-02064699
https://doi.org/10.1145/2010324.1964943
https://doi.org/10.1145/2010324.1964943
https://doi.org/10.1111/1467-8659.00699
https://doi.org/10.1145/2816795.2818102
https://doi.org/10.1145/1274871.1274878
https://doi.org/10.1145/1572614.1572622
https://doi.org/10.1145/1141911.1141916
https://doi.org/10.1007/s00371-018-1541-7
https://doi.org/10.1007/s00371-018-1541-7
https://doi.org/10.1145/3306214.3338606
https://doi.org/10.1145/1809939.1809946
https://doi.org/10.1016/j.cag.2017.05.001
https://doi.org/10.1016/j.cag.2017.05.001
https://doi.org/10.1016/j.cag.2010.11.006
https://doi.org/10.1145/3119910
https://doi.org/10.1145/3119910
https://doi.org/10.1145/2508363.2508409
https://doi.org/10.1080/2151237x.2011.609773
https://doi.org/10.1080/2151237x.2011.609773
https://doi.org/10.1145/508535.508537
https://doi.org/10.1145/3092919.3092923
https://doi.org/10.1145/3272127.3275054
https://doi.org/10.1145/1778765.1778816
https://doi.org/10.1145/2010324.1964945
https://doi.org/10.1145/2010324.1964945

	Abstract
	1 Introduction
	2 Related Work
	3 Inverted Stippling
	3.1 LBG Stippling
	3.2 Multi-class LBG Extension
	3.3 Density-based Rendering Order
	3.4 Background Filling

	4 Results
	4.1 Result Images
	4.2 Color Stippling and Flexible Shapes
	4.3 Layer-Coupling Scheme
	4.4 Density Representation
	4.5 Blue-Noise Property
	4.6 Performance

	5 Discussion
	5.1 Temporal Coherence
	5.2 Applications
	5.3 Multi-class Sampling
	5.4 Transferability to Other Methods

	6 Conclusion
	Acknowledgments
	References

